NOTATION

vy, axis of symmetry of the sprayer; r, distance from the axis of symmetry; &, thick-
ness of liquid film; s, coordinate measured along the surface of the sprayer; n, coordinate
measured along a.normal to the sprayer surface; ¢, azimuthal coordinate; u, v, w, corresponding
components of the velocity vector; p, pressure; F, centrifugal force; R, radius of curvature
of the sprayer surface; AL, element of the sprayer surface; 6,. angle of. inclination of the
surface to the y axis; p, liquid density; 7, L, characteristic lengths; h, Lame coefficient;
Fu, BEuler number; A, o, A, similarity parameters; y, stream function.
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EFFECTIVE TRANSPORT COEFFICIENTS IN: A DISPERSE MEDIUM WITH
ELLIPSOIDAL INCLUSIONS

Yu. A. Buevich, A. Yu. Zubarev, UDC 536.24.01
and S. A. Haidanova

Expressions are obtained for the steady-state conductivity tensor for moderately
concentrated heterogeneous materials with ellipsoidal inclusions.

If the linear dimensions .of the mean temperature: or concentration fields in a heterogene-
ous medium (consisting of a homogeneous matrix with discrete inclusions distributed in it) are
significantly larger than the characteristic dimensions of the inclusions, then heat or mass
transport is naturally described in terms of the continuum approximation. ' In this case it
is sufficient to introduce effective thermal conductivities or diffusion coefficients for the
medium -as -a'whole [1, 2].

The determination of -these effective coefficients for a medium with spherical inclusions
‘has been considered in 'a number of papers, but the number of papers devoted to the analogous
problem for a medium with nonspherical inclusions is quite small. A dilute dispersion of non-
spherical inclusions was considered in [3]. A moderately concentrated dispersion of spheroidal
inclusions was.studied in [4, 5] in the dipole approximation .(where the contribution of each
inclusion to the mean field is replaced by that of a point dipole at the center of the given
inclusion). In the present paper the general methods of [2] are used to analyze the proper-
ties of a heterogeneous material with ellipsoidal inclusions. The spatial distribution of the
ellipsoids is assumed to be random and their orientation is assumed to obey a given statistical
distribution law which is identical for.all points of space. Then -the material is macro-
scopically homogeneous, although it is not neceéssarily isotropic. We note that this theory
is important not only in the deseription of materials with inclusions, but also as a model
for the analysis of transport processes in isotropic and anlsotroplc polycrystalline media of
more complicatedstructure [6, 7].

Statement of the Problem. In an anisotropic heterogeneous medium the relation between
the mean heat flux and the gradient of the mean temperature has the form

q=—hyr, @
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where A is a symmetric tensor of the second rank. In the special case when the sizes and
shapes of all the ellipsoids are identical, this tensor can be found using the method of [2]
from the relations [5]

A — Aol = (A — 2o} pv,

2
v-E(R) =-;—f [ vig R+ rR) dro (@) dQ, ()
Q rgVv

where { denotes the set of variables determining the orientation of an ellipsoid, and

¥ (R+r|R) denotes the temperature inside an ellipsoid whose center is at the point R and
whose orientation is characterized by Q, averaged over all physically allowed positions and
orientations of all of the other inclusions. The integration with respect .to dr goes over
the volume V of an isolated (test) ellipsoid, and the orientational distribution function
¢(Q) is normalized to unity.

-:If the volume concentration of inclusions is not large, then the test ellipsoid can be
considered, approximately, te be embedded in a fictitious medium, whose properties are the
same as those of the original heterogeneous medium. This model of a moderately concentrated
medium corresponds to*neglecting the fact that the ellipsoids cannot overlap [2, 4, 5]. In
this case the field T( can be determined from the solution of the pollowing problem for the
test ellipsoid:

v (h-yt) =0, r¢V; At =0, reV;
v >0, r—o00; & <o, r=0 (3)

E.r._ip 1’ = 1?2(‘ , nl(E—E_VT,”): kln-Vng y I'ES

Here S and V are the surface and volume of an ellipsoid of a given orientation, whose center

is chosen as the origin of coordinates (R= 0); n is a unit vector normal to $; 1'(r) is inter-
preted as the perturbation of the linear mean temperature due to the test ellipsoid; the vector
E is a constant vector defined at the center of the ellipsoid. The solution of the boundary-
value problem (3) can be used to find the function t*(R-+r|R)=1% (r}, which depends on the
components A as well as the parameters. Using this function in the integral of (2), we obtain.
a system of three transcendental equations for the three unknown principal values of the tensor
» In general the principal axes of this tensor do not coincide with the principal axes of the
test ellipsoid, whose directions are characterized by the orientational variables Q.

Temperature Field inside the Test Ellipsoid. The complete solution of (3), which is not
difficult to obtain in ellipsoidal coordinates, is very complicated. However, the complete
solution is not of primary interest in the context of the present paper; rather we need to
find only the mean temperature gradient E*(Q) = = V1% inside an ellipsoid of a given orientation.
Therefore we employ certain well-known results directly, without solving the boundary-~value
problem in detail.

We introduce the Cartesian coordinatesx, v, z taken along the principal axes of the tensor A and
consider first a test ellipsoid whose principal axes are oriented along the coordinate axes.
The semiaxes of the ellipsoid are denoted by a, b, and c¢c. A uniform gradient of the mean
temperature far from the ellipsoid can be represented as the vector sum Exex+Eye,+Ese;, where
the e; (i = x, y, z) .are unit vectors. We consider separately the effect of each term in this
sum on the field inside the ellipsoid. From symmetry considerations it is obvious that the
field inside the ellipsoid excited by the external field Eier-r is such that its gradient is
parallel toey, i.e., it can be represented in the form E* &x « In order to use the results of
[8] we perform a scaling transformation of the coordlnates, thereby transforming the operator
V- (A -V)outside the ellipsoid into the operator AzA. It is important that the mean temperature
gradient remain unchanged in the x direction after the scaling transformation is performed.
Hence the relation between the corresponding heat fluxes and gradients must remain invariant
to the transformation. The transformation has the form

x' = x, y = YyY» Z' = 7.z, Vyz = }"x/}"y,z-
As a result of the transformation the ellipsoid is deformed and its new semiaxes are

a’==a,li==vyh ¢’=y,c.. Following the reasoning of [8], it can be shown that the vector
field Ey is uniform and we thereby obtain
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where nx is the corresponding eigenvalue of the depolarization tensor of the deformed ellip-

soid, and depends not only on a, b, ¢, but also on the prineipal values Aj of the tensor ).

In a completely analogous way we can calculate the temperature gradient inside an ellip-
soid excited by the external fields Eye,-r and Ese,-r . Here we use transformations which
leave the scale of the coordinates y or z unchanged, respectively. We then obtain the final
expression for the temperature gradient inside the ellipsoid

. ME AE A
E* — Cank e, v e, + £ e,
7\'::: + (7“1 “—}"x) Ny }"y + ()"1 - 7"y) ny : Az + (}"1 - }"z) iy (4)

and ny, ny, nz are the eigenvalues of the depolarization tensors of different (but similar in
shape) ellipsoids. Since these quantities depend only on the ratios.of the semiaxes, and not
on the volume of the ellipsoid, they can be determined for a single ellipsoid with principal
semiaxes a', b', c'.

The generalization to the case of an ellipsoid whose principal axes X, Y, Z are oriented
arbitrarily to the prinecipal axes x, -y, z-of the temnsor A is trivial. It is sufficient to
represent the external temperature field in the form Exex-Evey+Ezez and calculate the com-
ponents of the temperature gradient inside the ellipsoid due ‘to the three terms of this sum,

‘using scaling transformations of the coordinates x, y, z which leave the scale unchanged in
the direction of the axes X, Y, or Z, respectively. Then we again obtain a formula of the
type (4), in which x, .y, 2z is replaced by:X, Y, Z, and the quantities nj (i =X, Y, Z) depend
in addition on the variables  (since the principal semiaxes of the ellipsoids deformed by
the scaling transformations depend on Q).

Using these results and (2), we can determine a system of equations for the principal
values of effective thermal conductivity tensor in (1), for a disperse medium with an arbi-
trary orientational distribution function of inclusions. We consider in more detail the cases
where all.inclusions are oriented in the same direction, and where the orientation of the in-
clusions is random. In. the first case the medium is anisotropic and its principal axes coin-
cide with the principal axes of the &llipsoidal inclusions; in the second case the medium is
isotropic.

‘Material with Identically Oriented Inclusions. Substituting (4) into (2), we obtain a
system of three equations for Ax, Ay, Agz!

Moh P ke, ()
AM—he A (M —M)ng

and the )j-dependent eigenvalues of the depolarization tensor are given in the form
L a’
1 5 a'b'c’dx .

n; = _2— (ai’2 _l_.x)[(qlz+x)(blg+x)(clg+x)]l/2 y Qi = ‘l:: . (6)

0

For a dilute medium we can assume, approximately, that Ai{ = X¢. In this case Xj on the
right side of (5) can be replaced by X¢, and ni by the quantities nd, referred to the unde-
formed ellipsoid with principal semiaxes a, b, c. Then we obtain the result corresponding to
the theory of [3]

S

+ (e —1Dn; 2o

where the_ng are obtained using formulas of the type (6).

_Equation (5) simplifies considerably in the limiting cases of perfectly conducting (x -
©) and nonconducting (x = 0) inclusions. If we assume that the ratios of the semiaxes b/a and
c/a are fixed then
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Fig. 1. Relative longitudinal conductivity of a medium with highly
conducting needlelike inclusions as a function of s = b/a for p =
0.01; solid curves: the solution (12); dashed curves: from (13); 1)
log « = 23 2) log « = 3.

Fig. 2. Relative transverse conductivity of a medium with highly
conducting disklike inclusions as a function of ps with «/s = 0.5
(1) and 50 ¢). Solid curves: the solution (15), dashed curves: (16).
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We consider in more detail a medium with inclusions in the form of spheroids, i.e.,
ellipsoids of rotation (b = ¢). 1In this case Ay = Az, the system of equations for Xy and
Ay coincide in form with (5), .and in place of (6) we can write [8]:
(1—e(. 14e b L/fﬁz: _
. o (). Ty
. =
14-¢ b am
: . — — . 8
——(e—arcige), — l/ ?»y>1’ : (8)
1 b \ZA. [1/2
n,=1n,=—(1—n), e=|1 —{—} =51 .
o2 ( ? ] ( a ) Ay

For a medium with spherical inclusions nx = ny = nz = 1/3 and from (5) we obtain the
well-known equation for the effective scalar thermal conductivity of a.disperse medium [9]

A—hy  3ph
M—Ay A2

which is valid approximately for a medium with a moderate concentration of the dispersed
phase. We note that this equation differs from the analogous result obtained in the dipole
approximation [10].

For a medium with needlelike.inclusions (the limit s = b/a - 0 for finite k) we have
nx > 0, ny = nz ~ 1/2 and it follows from (5) that

g ho [1 4 p (2 — 1)1,
Ay = Ay = (ho/2) {I(1 — 20Y(3 — 1)* + 4x]'/* — (1 — 20) (x — 1)},

y

(9

which is the same as the result of [11] for heterogeneous materials with parallel cylindrical
fibers.

For a medium with disklike inclusions (the limit s = b/a - = for finite ) we have nx -+
1, ny = ny + 0 and it follows from (5) that
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e holl—p (L= by =l el p (e D) (20)

which is an obvious result for a layered medium.

Equations (9) and (10) can become invalid if k or x~! goes to zero or infinitely more
rapidly than s or s™!. We consider these singular cases in more detail. For a medium with
highly conducting, elongated spheroidal inclusions s « 1 and »>» 1. Taking into account only
the principal terms in the small-parameter expansion of (8), for such inclusions we obtain,
approximately

ame-En L L
Ny m 21r10L<<1n n,~2,a S}"y

~Using this in (5), we see that the transverse thermal conductivity is given by the second
equation in (9) for all x, as before, and we obtain the following equation.for the relative
longitudinal thermal conductivity in the limit kx > 1 (here B; = Ai/ho):

oxP. 1 o
— N ———— = —1In—
P By +xm Y 1—2 " . (11)

where the formula for By follows from (9) in the limit k * ®* We see from (11) that the
limiting relations forg x corresponding to equations (7) and (9) are obtained for xm » € % and
»m P x» respectively. Therefore, it is not difficult to determine the region of approximate
validity of these relations in the parameter space. In general, it follows from (11) that

. ) 1—20 1 . ~1
ﬁx~l+pn{1+ 5 zcs[lrl-———-———(l_~2p)s2 lnﬁx]} . (12)

If p& 1 and ‘also s~ » Bx, then with logarithmic accuracy we have

e 1+ px(l +- xs21n-—l—>_l.

s

(13)

The solution of equation (12) and the result (13) are illustrated in Fig. 1.

We consider now a medium with highly conducting disklike inclusions, when s > 1 and
Kk 2>1. In this case'we have from (8)

oA
nyx1—2m, ny=rn,~m= _Z—:<<1’ o=st—=

The longitudinal thermal conductivity is expressed, as before, by the first equation of
(10) for all «k, and .in. place of the second formula for k > 1 we obtain the following equation
for the relative transverse thermal conductivity:

. pufy B, ~ 1 mo—
» Fax ™~ > -

B, + xm 1—p 4Vea s

p, —1~

In the limits »m>PBy and xm<Py we then obtain the limiting relations correspondlng to
(7) and (10). 1In the general case it follows from (14) that

ax V1i—p )*’.

Pt "“(1+??‘7gs;_,f, 1s)

If %<<SVB; we have the result which follows from (10); in the opposite case (strong

inequality) we have (if p« 1)
202 \1/2 12
B, ~ <1+4snp) +2spJ_
n? n (16)

The quantities By as obtained from (15) and (16) are shown in Fig. 2.

The transfrers’e thermal conductivity of a medium with poorly conducting disklike inclu-
sions can be obtained from :(10) in the limit =< 1, i.e., gy~ 1—p . However, the longitudinal
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Fig. 3. Relative longitudinal
conductivity of a medium with
poorly conducting disklike in-
clusions as a function of ps
from (17) and (18) (solid and
dashed curves respectively) for
log (ks) =1 (1) and 0 (2).
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Fig. 4. Dependence of the quantities @;= (k/M—&)
/e (i==x, y) on e=p/s?1n(2/s) for a medium
with highly conducting needlelike inclusions for

= 0.0106, x> 1. Curves: calculated results
from (7); points: the data of [13].

thermal conductivity of such a medium (in.a direction perpendicular to the plane of the disks)
can be found with the help of the solution of the equation

Burr 1 — psVBx(vﬁx + 4‘;%-9)*1

(17)

and is given by the formula B,=~ (14 p/%)™ , following from (10) only when xs» ﬁxfg 1. If
we have instead .the opposite strong inequality and also p& 1, then from (17) we have

: [ 4s?p% (172 2sp 12
LA 1| et MO A
bs [( ™ :n) x| (18)

The solution (17) and equation (18) are illustrated in Fig. 3.

These results suggest that highly nonspherical needlelike or disklike spheroids with a
high thermal conductivity can strongly affect the effective longitudinal or transverse thermal
conductivities of .a heterogeneous medium with identically oriented inclusions, even if their
volume concentration p is very small.  Similarly, the presence of identically oriented non-
conducting dislike inclusions can significantly decrease the thermal conductivity in the
direction perpendicular to the plane of the disks, even when 9<&K 1. Indeed, it follows from
the relations given above that the effectlve thermal conductivities Bx and Py are pro-
portional not to p itself, but to ps? (this is the volume concentration of spheres in the
medium, where the radius of a sphere is equal to the larger of the two semiaxes of the
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TABLE 1. Relative Effective Thermal Conductivity of a
Moderately Concentrated Medium with Randomly Oriented
Spheroidal Inclusions

0,01 0,97 | 0,93 { 0,91 0,89 0,83 0,76 0,84 0,77 0,64

100 1,151 1,43 | 1,62 1,35 1,75 2,46 1,77 2,71 2,79

Note: The upper rows of numbers are the results from
(20); the lower rows are the results from the dipole
approximation [4].

spheroid) or to p¥ or ox! (for »>> 1l:.and x&€ 1, respectively). This fact has been noted
earlier [3-5] and has been discussed in detail in.[1]. A similar behavior is also character-
istic for the.effective viscosities of suspensions of needlelike particles undergoing
straining flows [12].

The number of experiments measuring the effective conductivities of media with identi-
cally oriented inclusions, and subject to sufficiently controlled conditions, is not large.
In Fig. 4 we compare the theory developed here and the experimental data of [13]. If we take
into account that the experimental data is characterized by large dispersion, and the fact that
the inclusions are really not spheroids, but wire fragments, many of which are curved, we see
that the correspondence between the theory and experiment:can be considered to ‘be satisfactory.

Materials with Randomly Oriented Inclusions. In this case the material is not only
macroscopically homogeneous, but also isotropic. Using (4) with Ay = Ay = Az = A and aver-
aging over all equally probable orientations of the test ellipsoid, we obtain from (5) an
equation for A

A—ho _ P 1 N 1 - 1
e 3 | A F G AT Oa—Rm, | A=A (19)

where ng are the eigenvalues of the depolarization tensor for the undeformed ellipsoid with
semiaxes a, b, ¢, calculated from formulas analogous to (6). For a medium with spheroidal
inclusions (b = c¢) this equation.simplifies considerably:

4

h—hy P 1 : 1
—— = Q ] A/)

Nt 3 {k+(?~1—x)nx TR G = | (20)
where n; can be found from (8) with Kx/Ay =1,

From (19) and (20) it is not difficult to obtain the well-known expressions for the
effective thermal conductivities of a dilute suspension with ellipsoidal inclusions and of
a moderately concentrated material containing needlelike spheroidal particles.

In the limiting cases of needlelike and disklike spheroids, we obtain from (20)
equations replacing (9) and (10):

R R [ ) L R kDl I B
| | 1)

] o
k»lo‘-l%——?——p(u—l) _-"—(1.— _1_) e 1.
3 3 ® *

In place of (7) we obtain for perfectly conducting and nonconducting spheroids in this case
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o, —1 -
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0 5—3n,
}\4—"‘—_}\,0 1-—{—-——-(%»—])*————;2— s % >0,
3 I—n,

Some of the results following from (20) are collected in Table 1 where the corresponding
results calculated with the dipole approximation [4] are also shown. We see that overall
the dipole approximation is completely satisfactory for computing the effective thermal
conductivities of heterogeneous materials.

‘As in the case of a medium with identically oriented inclusions, a strong dependence of
the effective thermal conductivities on the presence in the inclusions, even for very small
concentrations, is also characteristic of a medium with randomly oriented inclusions. Since
for a disperse medium with spherical particles, the model of a moderately concentrated medium
(where the impenetrability of the particles is neglected) leads to satisfactory results up
top=<30.20-0.25, in the case. considered here, particularly for a random orientation of inclu-
sions, one expects errors at smaller values of the concentration. Similar results were ob-
tained in [11] for fibrous materials as well. Therefore it is of considerable interest to
develop the theory further, and take into account the actual distribution of the centers of
the ellipsoids in the neighborhood :of the test ellipsoid.

According to the model: of a moderately concentrated medium, the thermal conductivities
for p = const depend upon the shapes and orientations of the ineclusions, but not on their
sizes. In this model the results obtained here can easily be extended to the case when there
are inclusions of different shapes in the medium; to handle this problem it 1s sufficient to
average (2) over the variables characterizing the shape of the ellipsoids, as well as over
the orientational variable Q.

In conclusion we emphasize that in view of the equivalence of the mathematical formu-
lation of the various transport problems for a test ellipsoid, the equations given above can
be used directly to compute the steady-state effective coefficient of diffusion of the
impurities in media with ellipsoddal -inclusions, and also the effective electrical
conductivities, dielectric permitivities, and magnetic susceptibilities of such materials.
Our results for a medium with disklike inclusions. can be used to determine the lumped
component of the permeability of fissured-porous materials; this is an important problem in
applications. In this sense, our results are a significant extension of those of [14], where
the components of the effective interstitial permeability tensor were calculated.

NOTATION

a, b, c, lengths of the semiaxes of the ellipsoids; e, defined in (8); ¢ , unit vector;

E, mean temperature gradient3; ] , unit tensor of the second rank; q , flux; n, unit vector
normal to the surface of the test particle; m, defined in (11); nji, principal values of the
depolarization tensor of a test ellipsoid; S and V, its surface and volume; s, ratio of the
semiaxes of the spheroid; Bi=hAi/A; yi=Ai/hke; A , thermal conductivity; v, tensor defined in (2);
.ps volume concentration of the dispersed phase; © , mean temperature; @, characterizes the
orientation of the ellipsoid; ¢ (Q), orientational distribution function of the ellipsoids;
w=M/A0 ; tg and 7 , temperature inside the test ellipsoid and .the perturbation caused by it
in the mean temperature;  the subscripts 0 and 1 denote quantities referring to’' the matrix and
inclusions, respectively.
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MASS TRANSFER IN A SOLID PARTICLE. WITH COMPETING REACTIONS WITH
A MULTICOMPONENT GAS MIXTURE

A. V., Kamennykh . UDC 541.128

A macrokinetic model of the transformation .of a solid particle, reacting with a
multicomponent gas mixture, is constructed for arbitrary ratios between the

rates of the mass~transfer stages of the transformation process (sorption, disso-
lution, and diffusion of the starting and final products).

Processes for working solid dispersed materials with multicomponent gaseous mixtures
are widely used in modern teéchmology. In the general case a macrokinetic model of the trans-
formation of a solid particle reacting.im the atmosphere of a gaseous mixture must take into
account all elementary mass~transfer stages of the reaction: sorption—desorption of reagents
and. reaction products from both.phases and their dissolution and diffusion in the solid
particle.. Well-known theoretical studies [1, 2] usually presume that there exists one limiting
stage of mass transfer, which is insufficient for describing reactions of practical interest.
The model of the solid-phase transformation, constructed in [3, 4] and presuming that the
rates of several stages are comparable, must be generalized to the case of the interaction
of solid spherical particles with gaseous mixtures. Modeling such processes enables the
calculation and optimization of different states as well as. the intensification of the
interaction of solid particles with the . gas phase by increasing the partial pressures of
gaseous reagents or by changing the composition of the gaseous mixture.

In studying a gas mixture we assume .that we have N gaseous reagents and that corresponding-
ly, N gaseous reaction products form. ‘Under the assumptions made in [3, 4], we assume that
the chemical reaction involved in the interaction of the solid reagent with each gaseous
reagent itself proceeds much more rapidly than the mass transfer processes, and the reaction
front separates the region of the starting reagent and the solid product of the reaction.
Analogously to [3, 4] we shall formulate the equations of kinetics of all stages of the

process.
Defining Si and S} as the relative fractions of the area of the surface layer filled with
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